안녕하세요. 오늘은 지난 시간에 이어, 몇 년사이에 큰 이슈가 되고 있는 인공지능 딥러닝에 대한 이야기를 간략히 소개해 보겠습니다. 이 내용은 BIM학회에 '인공지능 딥러닝 기술 동향 및 구현 사례'로 소개된 글의 일부 내용입니다. CNN, RNN, LSTM, GAN과 같은 대표적인 딥러닝 신경망 종류 및 3차원 스캔과 관련된 CNN활용 사례 등을 소개합니다.
소개된 부분에 대한 좀 더 상세한 내용은 다음 레퍼런스에서 확인할 수 있습니다.
5. Konstantin Lackner, 2016, Composing a melody with long-short term memory (LSTM) Recurrent Neural Networks, Institute for Data
Processing Technische Universitat Munchen
6. Patrick Hebron, 2016, Unsupervised Learning, patrickhebron.com
7. Alec Radford & Luke Metz, Soumith Chintala, 2016, Unsupervised Representation Learning with Deep Convolutional Generative
Adversarial Network
8. Adam Santoro외, 2017, A simple neural network module for relational reasoning, DeepMind
9. Microsoft, Going Deep: Convolutional Neural Networks
10. The Asimov Institute, 2016, THE NEURAL NETWORK ZOO
11. Adit Deshpande, 2016, The 9 Deep Learning Papers You Need To Know About CNN
12. Adrian Rosebrock, 2016, My Top 9 Favorite Python Deep Learning Libraries
13. Jonas Gehring, Michael Auli, David Grangier, Denis Yarats, Yann N. Dauphin, 2017.5, A novel approach to neural machine translation,
FAIR(Facebook AI Research Group)
14. Adit Deshpande, A Beginner's Guide To Understanding Convolutional Neural Networks, UCLA
15. Rob Verger, 2017.5, Facebook created a faster, more accurate translation system using artificial intelligence, Popular Science
16. James Vincent, 2017.5.9, Facebook says its prototype translation technique is nine times faster than rivals, THE VERGE
17. Jonas Gehring, Michael Auli, David Grangier, Denis Yarats, Yann N. Dauphin, 2017.5, Convolutional Sequence to Sequence Learning,
FAIR(Facebook AI Research Group)
18. Charles R. Qi, Hao Su, Kaichun Mo, Leonidas J. Guibas, 2016, PointNet: Deep Learning on Point Sets for 3D Classification and
Segmentation
19. Sepp H., Jurgen S, 1997, Long short-term memory, Neural Computation. 9 (8) ,pp.1735–1780
20. Goodfellow. Ian J, Pouget-Abadie. J, Mirza. M, Xu. Bing, Warde-Farley. David, Ozair. Sherjil, Courville. Aaron, Bengio. Yoshua, 2014,
Generative Adversarial Networks